The Olympic Dam copper-gold-uranium-REE ore deposit is located some 550 km NNW of Adelaide and 275 km NNW of Port Augusta, in northern South Australia.
Olympic Dam and all of the other significant known IOCG mineralised systems of the Mesoarchaean to Mesoproterozoic Gawler Craton are hosted within Palaeo- to Mesoproterozoic rocks, and are distributed along the eastern rim of the currently preserved craton to define the Olympic IOCG Province (Skirrow et al., 2007). Olympic Dam lies below the Neoproterozoic Stuart Shelf, where >300 m of flat lying, barren, Neoproterozoic to lower Palaeozoic sedimentary rocks unconformably overlie both the craton and the ore deposit. Some 75 km to the east, this cover sequence expands over the major NNW trending Torrens Hinge Zone at the edge of the craton, into the thick succession of the north-south aligned Neoproterozoic Adelaide Geosyncline rift basin, that masks the mid- to late-Palaeoproterozoic suture between the Gawler craton and Palaeo- to Mesoproterozoic Curnamona Province to the east.
The oldest basement rocks in the Gawler craton are Meso- to Neoarchaean gneisses (to the west) and metasedimentary and meta-volcanosedimentary rocks, and deformed granites correlated with the Palaeoproterozoic 1.96 to 1.85 Ga Hutchison Group, the 1.79 to 1.74 Ga Wallaroo Group, and the 1.85 to 1.69 Ga Lincoln Complex (Donington Suite) granitoids, respectively. These rocks are intruded by the widespread Mesoproterozoic A- and I-type granitoids of the ~1.59 Ga Hiltaba Suite (with the former dominating in the Olympic IOCG Province) and are overlain by comagmatic bimodal volcanic rocks of the areally extensive Gawler Range Volcanics (GRV).
Mineralisation at Olympic Dam is hosted by the 50 km2 Olympic Dam Breccia Complex (ODBC) that is developed within the Mesoproterozoic (1600 to 1585 Ma) Roxby Downs Granite. The Roxby Downs Granite is a pink to red coloured, undeformed, unmetamorphosed, coarse to medium grained, quartz-poor syenogranite with A-type affinities that is petrologically and petrochemically similar to granitoids of the Hiltaba Suite. Other lithologies within the ODBC comprise a variety of granite- to hematite-rich breccias, sedimentary facies, felsic/mafic/ultramafic dykes, volcaniclastic units, basalts and their altered/mineralised equivalents. The ODBC and the surrounding Roxby Downs Granite form a local basement high on a broader regional basement uplift.
Within the overall alteration envelope, the distribution of mineralisation and alteration exhibits a downward and outward zonation, while the ODBC correspondingly comprises a downward narrowing, funnel-shaped body of fractured, brecciated and hydrothermally altered granite which has resulted in a great variety of granitic, hematitic and siliceous breccias. The complex has a conical, downward tapering, central "core" of barren, but intensely altered hematite-quartz-breccia, passing outwards through concentrically zoned breccia types, including heterolithic hematite breccias (with clasts dominantly of granite and recycled hematite breccias, and domains where abundant sedimentary and volcaniclastics rocks predominate locally), to monoclastic granite breccias with a magnetite/hematite matrix, to weak incipient microfracturing of the RDG on the outer margins. A halo of weakly altered and brecciated granite extends out approximately 5 to 7 km from the core in all directions to an indistinct and gradational margin with the host granite. This progression represents an outward decrease in the degree of brecciation and intensity of iron metasomatism away from the core of the complex. The quantity of recycled hematite breccia, GRV and sedimentary rock clasts within the heterolithic hematite breccias decreases from shallow to deep levels (Ehrig, 2010; McPhie et al., 2010). The areal extent of more intensely hematite altered breccias within the complex is >5 km in a NW-SE direction, up to 3 km across, and is known to extend to a depth of at least 1400 m.
The development of the ODBC, which shows textural evidence of polycyclic alteration and brecciation events, can be considered as having formed by the progressive hydrothermal brecciation and iron metasomatism of the host granite. In detail, alteration assemblages are highly variable with complex mineral distribution patterns resulting from the polycyclic nature of the hydrothermal activity. Never-the-less, there are systematic patterns of alteration that are recognised across the deposit as a whole, and at the scale of individual breccia zones, with the degree of alteration intensity being directly related to the amount of brecciation.
The bulk of the mineralisation within the Olympic Dam deposit is associated with an assemblage of hematite-sericite-fluorite-barite-chalcopyrite-bornite-chalcocite (djurleite), the outer margin of which largely corresponds to the limits of the ODBC, where a deeper magnetite-carbonate-chlorite-pyrite±chalcopyrite zone marks the transition to the more regional magnetite-K feldspar±actinolite±carbonate assemblage (Ehrig, 2010). No associated sodic metasomatism has been observed.
The better mineralisation and strongest alteration outside of the barren core corresponds to the best-developed hematite-granite breccias. The concentric, moderate to steeply inward dipping breccia zones of the ODBC are cut by a convoluted, but overall roughly horizontal, ~50 m thick layer characterised by chalcocite and bornite, ~100 to 200 m below the unconformity with the overlying Neoproterozoic cover sequence. Both the upper and lower margins of this zone are mappable. Above the upper margin, sulphides are rare and little copper mineralisation is found in the same hematitic breccias. The lower margin marks a rapid transition to chalcopyrite, which decreases in copper grade downwards, corresponding to an increase in the pyrite:chalcopyrite ratio. While this zone is largely horizontal, as it approaches the central barren core it steepens markedly, but is still evident at depths of >1 km below the Neoproterozoic unconformity (Reeve et al., 1990; Reynolds, 2000; Ehrig, 2010). The geometry of this mineral zonation, strongly suggest interaction between upwelling and downward percolating fluids. For all fluids related to hematite alteration, fluid inclusion homogenisation temperatures are mostly between 150 and 300°C and salinities range from ~1 to ~23% NaCl equiv. (Knutson et al., 1992; Oreskes and Einaudi, 1992; Bastrakov et al., 2007).
The higher grade underground resource occurs as up to 150 separate bodies distributed within an annular zone up to 4 km in diameter surrounding the central barren hematite-quartz breccia. These bodies correspond to the overlap of the flat-lying chalcocite-bornite layer and the steeper, inwardly dipping ring of hematite-granite breccias.
The principal copper-bearing minerals are chalcopyrite, bornite, chalcocite (djurleite-digenite), which on the basis of Nd isotopic data, textural and geochemical features appear to have precipitated cogenetically. Minor native copper and other copper-bearing minerals are locally observed. The main uranium mineral is uraninite (pitchblende), with lesser coffinite and brannerite. Minor gold and silver is intimately associated with the copper sulphides. The main REE-bearing mineral is bastnaesite. Copper ore minerals occur as disseminated grains, veinlets and fragments within the breccia zones. Massive ore is rare.
At the end of 1989, after commencing mining operations in mid-1988, reported resources and reserves (Reeve et al., 1990) amounted to:
Measured + indicated resource = 450 Mt @ 2.5% Cu, 0.6 g/t Au, 6.0 g/t Ag, 0.8 kg/tonne U3O8,
Inferred resource = 2000 Mt @ 1.6% Cu, 0.6 g/t Au, 3.5 g/t Ag, 0.6 kg/tonne U3O8,
Proved reserve = 13 Mt @ 3.0% Cu, 0.3 g/t Au, 10.2 g/t Ag, 1.1 kg/tonne U3O8,
Proved gold reserve = 2.3 Mt @ 1.6% Cu, 3.6 g/t Au, 2.9 g/t Ag, 0.3 kg/tonne U3O8.
At December 2004, published (BHP Billiton, 2005) reserves and resources were:
Proved+probable reserves totalled 761 Mt @ 1.5% Cu, 0.5 g/t Au, 0.5 kg/tonne U3O8,
within a total resource of 3810 Mt @ 1.1% Cu, 0.5 g/t Au, 0.4 kg/tonne U3O8.
At 30 June 2012, the published resources (BHP Billiton, September, 2012) amounted to:
Measured resource = 1474 Mt @ 1.03% Cu, 0.35 g/t Au, 1.95 g/t Ag, 0.30 kg/tonne U3O8,
Indicated resource = 4843 Mt @ 0.84% Cu, 0.34 g/t Au, 1.50 g/t Ag, 0.27 kg/tonne U3O8,
Inferred resource = 3259 Mt @ 0.70% Cu, 0.25 g/t Au, 0.98 g/t Ag, 0.23 kg/tonne U3O8,
Total resource = 9576 Mt @ 0.82% Cu, 0.31 g/t Au, 1.39 g/t Ag, 0.26 kg/tonne U3O8.
This resource includes a total proved + probable reserve of:
629 Mt @ 1.76% Cu, 0.73 g/t Au, 3.36 g/t Ag, 0.57 kg/tonne U3O8.
At the same date, the separate non-sulphide gold resource was 364 Mt @ 0.75 g/t Au, comprising:
Measured resource = 73 Mt @ 0.85 g/t Au; Indicated resource = 255 Mt @ 0.73 g/t Au; Inferred resource = 36 Mt @ 0.70 g/t Au.
Production in 2011-12 totalled 192 600 tonnes of Cu, 3.66 t Au, 28.21 t Ag, 3885 tonnes U3O8.
The mine is owned and operated by a subsidiary of BHP Billiton Ltd (2015).
(Source: Porter GeoConsultancy, www.portergeo.com.au, 2015)