Golden Mile

Other Names: Kalgoorlie, Fimiston, Oroya, Paringa
District: Kalgoorlie
Commodities :   Gold

The KCGM Super Pit lies within the Kalgoorlie Gold Field, some 600 km east of Perth. It exploits the Golden Mile string of deposits. 

The Kalgoorlie Gold Field is developed within the Archaean Norseman-Wiluna greenstone belt of the Eastern Goldfields province in the eastern Yilgarn craton. It is hosted by greenschist facies, marine volcano-sedimentary rocks, divided into narrow blocks by NNW-trending regional wrench faults. The volcanic succession comprises, from oldest to youngest: (1) the Lunnon Basalt (~2720 Ma) - pillowed to massive tholeiitic lavas; (2) Kambalda Komatiite (2709±4 Ma) - ultramafic flows; and (3) Devon Consols and Paringa Basalts - two pillowed to massive magnesian lavas, separated by the 10 m thick, 2692±4 Ma, Kapai Slate marker horizon of sulphidic and tuffaceous shale. 

This volcanic succession is overlain by black shales, greywackes, and volcaniclastic rocks of the Black Flag Group. To the south of Kalgoorlie, near Kambalda, this latter unit is intruded by the 2680±8 Ma Condenser Dolerite sill and 2678±8 Ma rhyolite porphyry dykes. In the Kalgoorlie district it is intruded by the 750 m thick Golden Mile Dolerite, which is the principal host rock to lode structures, and comprises a folded and metamorphosed, differentiated sill, emplaced at the same stratigraphic position as the Condensor Dolerite. The youngest mineralised rocks in all gold mines located between Kalgoorlie and Kambalda are 2675 to 2660 Ma stocks and dykes of hornblende-plagioclase porphyry. 

Deformation of the volcano-sedimentary succession in the Kalgoorlie-Kambalda area was subdivided by Swager (1989) into four events:   D1, characterised by recumbent folding and nappe-style thrusting;   D2, which comprises upright folding that produced regional northwest-trending folds;   D3, a post ~2660 Ma episode of sinistral wrench faulting in a transpressional regime, with major NNW-trending faults; and   D4 which involved dextral wrench faulting, mostly NNE-trending. 

The Kalgoorlie Gold Field comprises more than 1000 discrete lodes, controlled by brittle-ductile shear zones, clustered in a geometric array on both sides of the steeply dipping, NW to NNW-trending, sinsitral Golden Mile fault, which transects folded Golden Mile Dolerite in the centre of the mining district. The most significant of the lodes make up the Golden Mile, Mt Charlotte, Mt Percy and Hannan's South ore zones. An envelope of chlorite-calcite alteration, surrounds the entire mining area, replacing metamorphic actinolite and albite in all mafic rocks. The main lode systems are contained within a volume of these altered rocks, which is up to 5 km in length, by 1 to 2 km in width, and to a depth of 1000 m. They are controlled by a complex series of steeply dipping shears, and are largely hosted by ultra-mafic and mafic rocks and sills, the most important of which is the composite mafic sill, the Golden Mile Dolerite, and to a lesser extent the Paringa Basalt. 

Two groups of structures, the Fimiston and Oroya lodes have been recognised. The Fimiston Lodes occur in steeply dipping (70 to 90°) shear zones, commonly parallel to the main Golden Mile fault, although others have different strike orientations. Individual lodes are up to 2 km long by 1.3 km in vertical extent, with high-grade shoots located at the intersections of shear zones. They are characterised by breccia bodies and cavity-fill veins surrounded by (1) an inner sericite-ankerite-siderite-quartz-hematite-pyrite±telluride alteration zone, containing most of the gold, and (2) an outer ankerite-sericite-quartz-pyrite zone where chlorite and calcite are progressively replaced. The ores are mineralogically refractory and complex, containing free native gold (often intimately associated with gold-bearing arsenical pyrite) and a significant proportion of Au-Ag-Hg-Pb telluride minerals. These Fimiston Lodes are subdivided into the Eastern and Western Lode System on the flanks of the Kalgoorlie Syncline. The Eastern Lodes System comprises a swarm of lodes (areas of pyritic and hydrothermal alteration) with mineralisation confined to shoots at lode-lode and lode-fault intersections. The Western Lode System is less complex, although the lodes are more persistent and well defined. Individual lodes occupy 20 to 50% of a lode channel and may be 30 to 1800 m long, 0.1 to 10 m thick and extend 30 to 1160 metres down dip. Mueller et al. (1988) suggest that the Fimiston Lode shear zones formed during D3 sinistral wrench faulting, whereas Bateman et al. (2001a) and Bateman and Hagemann (2004) conclude that the mineralised shear zones formed as flat, late D1 thrusting structures, subsequently rotated into their present subvertical position during D2 folding. 

The Oroya Lodes represent the high-grade "green leader" ores, characterised by green vanadian muscovite, ankerite, quartz, pyrite, native gold, and gold-silver tellurides, the principal example of which is the 1500 m long Oroya shoot on the Paringa mine leases of the Golden Mile. This lode is controlled in large part by the 50°W dipping, reverse Oroya shear zone system. This style of ore also occurs in the brecciated cores of steeply dipping Fimiston lodes, and may represent a late-stage of the D3 transpressional regime that generated the Fimiston lodes (Mueller et al., 1988), or a separate mineralisation event (Bateman et al., 2001). 

Mount Charlotte occurs as a quartz vein gold deposit, present as a series of steeply plunging, pipe-like vein stockwork orebodies in massive 2692±2 and 2678 to 2670 Ma metagabbro of the Golden Mile Dolerite.   These, and other related quartz-vein stockworks cross-cut the Fimiston and Oroya lodes, and are apparently controlled by district-scale NNE-trending strike-slip D4 faults.   The Mt Charlotte mine exploits the main Charlotte and Reward orebodies and the satellite Maritana and Northern bodies. The Charlotte orebody extends more than 800 m vertically, from the surface to -1000 m RL, 250 m north-south along strike and over a width of 50 to100 m east-west. Reward extends from the surface to -800 m RL, 250 m north-south along strike and 50 m east-west.   The orebodies are restricted to the most differentiated (and competent) unit of the host sill and are usually found adjacent to major steeply dipping faults where these cut the sill.   The stockworks have two sets of veins that were developed as hydraulic fractures and were filled simultaneously and are of equal significance.   Gold is in pyrite or pyrrhotite bearing metagabbro around the stockwork veins and to a lesser degree as free gold in the veins and along vein margins. 

The final 'Super Pit' open pit is designed (as of 2008) to have dimensions of 3.8 x 1.35 km and a depth of 500 m below the surface by 2018. Production in 2006 was 85 Mt of mined rock, 12 Mt of which was milled. The remaining tonnage was stockpiled low grade mineralisation and waste.   In 2007, the underground Mt Charlotte mine produced 1 Mt of ore @ 3 g/t Au. 

Total production from 1893 to 2005 was ~1475 t Au (47.5 Moz), with a further ~110 t from 2005 to 2010. 

The total open pit and underground reserves plus resources at December 31, 2010 were (Barrick, Newmont, 2011):
      Proved + probable reserves - 153 Mt @ 1.71 g/t Au, for 260 t Au; (reserves in addition to resources)
      Measured + indicated resources - 95.6 Mt @ 0.76 g/t Au, for 72 t Au; 
      Inferred resource - 2.24 Mt @ 4.47 g/t Au, for 10 t Au. 

The Kalgoorlie Super Pit open pit and Mt Charlotte underground operations are owned by KCGM, a 50:50 JV between Newmont Mining and Barrick Australia.   Production in 2010 totalled approximately 24.5 t of recovered Au (Barrick and Newmont, 2011).  

(Source: Porter Geoconsultancy, http://www.portergeo.com.au/, 2011)